Distributed Parameter Estimation in Probabilistic Graphical Models
Abstract
This paper presents foundational theoretical results on distributed parameter estimation for undirected probabilistic graphical models. It introduces a general condition on composite likelihood decompositions of these models which guarantees the global consistency of distributed estimators, provided the local estimators are consistent.
Cite
Text
Mizrahi et al. "Distributed Parameter Estimation in Probabilistic Graphical Models." Neural Information Processing Systems, 2014.Markdown
[Mizrahi et al. "Distributed Parameter Estimation in Probabilistic Graphical Models." Neural Information Processing Systems, 2014.](https://mlanthology.org/neurips/2014/mizrahi2014neurips-distributed/)BibTeX
@inproceedings{mizrahi2014neurips-distributed,
title = {{Distributed Parameter Estimation in Probabilistic Graphical Models}},
author = {Mizrahi, Yariv D and Denil, Misha and de Freitas, Nando},
booktitle = {Neural Information Processing Systems},
year = {2014},
pages = {1700-1708},
url = {https://mlanthology.org/neurips/2014/mizrahi2014neurips-distributed/}
}