Skip-Thought Vectors
Abstract
We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice. We will make our encoder publicly available.
Cite
Text
Kiros et al. "Skip-Thought Vectors." Neural Information Processing Systems, 2015.Markdown
[Kiros et al. "Skip-Thought Vectors." Neural Information Processing Systems, 2015.](https://mlanthology.org/neurips/2015/kiros2015neurips-skipthought/)BibTeX
@inproceedings{kiros2015neurips-skipthought,
title = {{Skip-Thought Vectors}},
author = {Kiros, Ryan and Zhu, Yukun and Salakhutdinov, Ruslan and Zemel, Richard and Urtasun, Raquel and Torralba, Antonio and Fidler, Sanja},
booktitle = {Neural Information Processing Systems},
year = {2015},
pages = {3294-3302},
url = {https://mlanthology.org/neurips/2015/kiros2015neurips-skipthought/}
}