Learning with Symmetric Label Noise: The Importance of Being Unhinged
Abstract
Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2008] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the unhinged loss’ SLN-robustness.
Cite
Text
van Rooyen et al. "Learning with Symmetric Label Noise: The Importance of Being Unhinged." Neural Information Processing Systems, 2015.Markdown
[van Rooyen et al. "Learning with Symmetric Label Noise: The Importance of Being Unhinged." Neural Information Processing Systems, 2015.](https://mlanthology.org/neurips/2015/vanrooyen2015neurips-learning/)BibTeX
@inproceedings{vanrooyen2015neurips-learning,
title = {{Learning with Symmetric Label Noise: The Importance of Being Unhinged}},
author = {van Rooyen, Brendan and Menon, Aditya and Williamson, Robert C.},
booktitle = {Neural Information Processing Systems},
year = {2015},
pages = {10-18},
url = {https://mlanthology.org/neurips/2015/vanrooyen2015neurips-learning/}
}