Optimal Spectral Transportation with Application to Music Transcription
Abstract
Many spectral unmixing methods rely on the non-negative decomposition of spectral data onto a dictionary of spectral templates. In particular, state-of-the-art music transcription systems decompose the spectrogram of the input signal onto a dictionary of representative note spectra. The typical measures of fit used to quantify the adequacy of the decomposition compare the data and template entries frequency-wise. As such, small displacements of energy from a frequency bin to another as well as variations of timber can disproportionally harm the fit. We address these issues by means of optimal transportation and propose a new measure of fit that treats the frequency distributions of energy holistically as opposed to frequency-wise. Building on the harmonic nature of sound, the new measure is invariant to shifts of energy to harmonically-related frequencies, as well as to small and local displacements of energy. Equipped with this new measure of fit, the dictionary of note templates can be considerably simplified to a set of Dirac vectors located at the target fundamental frequencies (musical pitch values). This in turns gives ground to a very fast and simple decomposition algorithm that achieves state-of-the-art performance on real musical data.
Cite
Text
Flamary et al. "Optimal Spectral Transportation with Application to Music Transcription." Neural Information Processing Systems, 2016.Markdown
[Flamary et al. "Optimal Spectral Transportation with Application to Music Transcription." Neural Information Processing Systems, 2016.](https://mlanthology.org/neurips/2016/flamary2016neurips-optimal/)BibTeX
@inproceedings{flamary2016neurips-optimal,
title = {{Optimal Spectral Transportation with Application to Music Transcription}},
author = {Flamary, Rémi and Févotte, Cédric and Courty, Nicolas and Emiya, Valentin},
booktitle = {Neural Information Processing Systems},
year = {2016},
pages = {703-711},
url = {https://mlanthology.org/neurips/2016/flamary2016neurips-optimal/}
}