Fast Active Set Methods for Online Spike Inference from Calcium Imaging

Abstract

Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse nonnegative deconvolution problem. Importantly, the algorithm progresses through each time series sequentially from beginning to end, thus enabling real-time online spike inference during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. The algorithm enables real-time simultaneous deconvolution of $O(10^5)$ traces of whole-brain zebrafish imaging data on a laptop.

Cite

Text

Friedrich and Paninski. "Fast Active Set Methods for Online Spike Inference from Calcium Imaging." Neural Information Processing Systems, 2016.

Markdown

[Friedrich and Paninski. "Fast Active Set Methods for Online Spike Inference from Calcium Imaging." Neural Information Processing Systems, 2016.](https://mlanthology.org/neurips/2016/friedrich2016neurips-fast/)

BibTeX

@inproceedings{friedrich2016neurips-fast,
  title     = {{Fast Active Set Methods for Online Spike Inference from Calcium Imaging}},
  author    = {Friedrich, Johannes and Paninski, Liam},
  booktitle = {Neural Information Processing Systems},
  year      = {2016},
  pages     = {1984-1992},
  url       = {https://mlanthology.org/neurips/2016/friedrich2016neurips-fast/}
}