NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization
Abstract
We study a stochastic and distributed algorithm for nonconvex problems whose objective consists a sum $N$ nonconvex $L_i/N$-smooth functions, plus a nonsmooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into $N$ subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner. With a special non-uniform sampling, a version of NESTT achieves $\epsilon$-stationary solution using $\mathcal{O}((\sum_{i=1}^N\sqrt{L_i/N})^2/\epsilon)$ gradient evaluations, which can be up to $\mathcal{O}(N)$ times better than the (proximal) gradient descent methods. It also achieves Q-linear convergence rate for nonconvex $\ell_1$ penalized quadratic problems with polyhedral constraints. Further, we reveal a fundamental connection between {\it primal-dual} based methods and a few {\it primal only} methods such as IAG/SAG/SAGA.
Cite
Text
Hajinezhad et al. "NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization." Neural Information Processing Systems, 2016.Markdown
[Hajinezhad et al. "NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization." Neural Information Processing Systems, 2016.](https://mlanthology.org/neurips/2016/hajinezhad2016neurips-nestt/)BibTeX
@inproceedings{hajinezhad2016neurips-nestt,
title = {{NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization}},
author = {Hajinezhad, Davood and Hong, Mingyi and Zhao, Tuo and Wang, Zhaoran},
booktitle = {Neural Information Processing Systems},
year = {2016},
pages = {3215-3223},
url = {https://mlanthology.org/neurips/2016/hajinezhad2016neurips-nestt/}
}