Real-Time Bidding with Side Information
Abstract
We consider the problem of repeated bidding in online advertising auctions when some side information (e.g. browser cookies) is available ahead of submitting a bid in the form of a $d$-dimensional vector. The goal for the advertiser is to maximize the total utility (e.g. the total number of clicks) derived from displaying ads given that a limited budget $B$ is allocated for a given time horizon $T$. Optimizing the bids is modeled as a contextual Multi-Armed Bandit (MAB) problem with a knapsack constraint and a continuum of arms. We develop UCB-type algorithms that combine two streams of literature: the confidence-set approach to linear contextual MABs and the probabilistic bisection search method for stochastic root-finding. Under mild assumptions on the underlying unknown distribution, we establish distribution-independent regret bounds of order $\tilde{O}(d \cdot \sqrt{T})$ when either $B = \infty$ or when $B$ scales linearly with $T$.
Cite
Text
Flajolet and Jaillet. "Real-Time Bidding with Side Information." Neural Information Processing Systems, 2017.Markdown
[Flajolet and Jaillet. "Real-Time Bidding with Side Information." Neural Information Processing Systems, 2017.](https://mlanthology.org/neurips/2017/flajolet2017neurips-realtime/)BibTeX
@inproceedings{flajolet2017neurips-realtime,
title = {{Real-Time Bidding with Side Information}},
author = {Flajolet, Arthur and Jaillet, Patrick},
booktitle = {Neural Information Processing Systems},
year = {2017},
pages = {5162-5172},
url = {https://mlanthology.org/neurips/2017/flajolet2017neurips-realtime/}
}