Learning and Testing Causal Models with Interventions
Abstract
We consider testing and learning problems on causal Bayesian networks as defined by Pearl (Pearl, 2009). Given a causal Bayesian network M on a graph with n discrete variables and bounded in-degree and bounded ``confounded components'', we show that O(log n) interventions on an unknown causal Bayesian network X on the same graph, and O(n/epsilon^2) samples per intervention, suffice to efficiently distinguish whether X=M or whether there exists some intervention under which X and M are farther than epsilon in total variation distance. We also obtain sample/time/intervention efficient algorithms for: (i) testing the identity of two unknown causal Bayesian networks on the same graph; and (ii) learning a causal Bayesian network on a given graph. Although our algorithms are non-adaptive, we show that adaptivity does not help in general: Omega(log n) interventions are necessary for testing the identity of two unknown causal Bayesian networks on the same graph, even adaptively. Our algorithms are enabled by a new subadditivity inequality for the squared Hellinger distance between two causal Bayesian networks.
Cite
Text
Acharya et al. "Learning and Testing Causal Models with Interventions." Neural Information Processing Systems, 2018.Markdown
[Acharya et al. "Learning and Testing Causal Models with Interventions." Neural Information Processing Systems, 2018.](https://mlanthology.org/neurips/2018/acharya2018neurips-learning/)BibTeX
@inproceedings{acharya2018neurips-learning,
title = {{Learning and Testing Causal Models with Interventions}},
author = {Acharya, Jayadev and Bhattacharyya, Arnab and Daskalakis, Constantinos and Kandasamy, Saravanan},
booktitle = {Neural Information Processing Systems},
year = {2018},
pages = {9447-9460},
url = {https://mlanthology.org/neurips/2018/acharya2018neurips-learning/}
}