Non-Asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems

Abstract

Stochastic Proximal Gradient (SPG) methods have been widely used for solving optimization problems with a simple (possibly non-smooth) regularizer in machine learning and statistics. However, to the best of our knowledge no non-asymptotic convergence analysis of SPG exists for non-convex optimization with a non-smooth and non-convex regularizer. All existing non-asymptotic analysis of SPG for solving non-smooth non-convex problems require the non-smooth regularizer to be a convex function, and hence are not applicable to a non-smooth non-convex regularized problem. This work initiates the analysis to bridge this gap and opens the door to non-asymptotic convergence analysis of non-smooth non-convex regularized problems. We analyze several variants of mini-batch SPG methods for minimizing a non-convex objective that consists of a smooth non-convex loss and a non-smooth non-convex regularizer. Our contributions are two-fold: (i) we show that they enjoy the same complexities as their counterparts for solving convex regularized non-convex problems in terms of finding an approximate stationary point; (ii) we develop more practical variants using dynamic mini-batch size instead of a fixed mini-batch size without requiring the target accuracy level of solution. The significance of our results is that they improve upon the-state-of-art results for solving non-smooth non-convex regularized problems. We also empirically demonstrate the effectiveness of the considered SPG methods in comparison with other peer stochastic methods.

Cite

Text

Xu et al. "Non-Asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems." Neural Information Processing Systems, 2019.

Markdown

[Xu et al. "Non-Asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems." Neural Information Processing Systems, 2019.](https://mlanthology.org/neurips/2019/xu2019neurips-nonasymptotic/)

BibTeX

@inproceedings{xu2019neurips-nonasymptotic,
  title     = {{Non-Asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems}},
  author    = {Xu, Yi and Jin, Rong and Yang, Tianbao},
  booktitle = {Neural Information Processing Systems},
  year      = {2019},
  pages     = {2630-2640},
  url       = {https://mlanthology.org/neurips/2019/xu2019neurips-nonasymptotic/}
}