Improved Algorithms for Online Submodular Maximization via First-Order Regret Bounds

Abstract

We consider the problem of nonnegative submodular maximization in the online setting. At time step t, an algorithm selects a set St ∈ C ⊆ 2^V where C is a feasible family of sets. An adversary then reveals a submodular function ft. The goal is to design an efficient algorithm for minimizing the expected approximate regret. In this work, we give a general approach for improving regret bounds in online submodular maximization by exploiting “first-order” regret bounds for online linear optimization. - For monotone submodular maximization subject to a matroid, we give an efficient algorithm which achieves a (1 − c/e − ε)-regret of O(√kT ln(n/k)) where n is the size of the ground set, k is the rank of the matroid, ε > 0 is a constant, and c is the average curvature. Even without assuming any curvature (i.e., taking c = 1), this regret bound improves on previous results of Streeter et al. (2009) and Golovin et al. (2014). - For nonmonotone, unconstrained submodular functions, we give an algorithm with 1/2-regret O(√ nT), improving on the results of Roughgarden and Wang (2018). Our approach is based on Blackwell approachability; in particular, we give a novel first-order regret bound for the Blackwell instances that arise in this setting

Cite

Text

Harvey et al. "Improved Algorithms for Online Submodular Maximization via First-Order Regret Bounds." Neural Information Processing Systems, 2020.

Markdown

[Harvey et al. "Improved Algorithms for Online Submodular Maximization via First-Order Regret Bounds." Neural Information Processing Systems, 2020.](https://mlanthology.org/neurips/2020/harvey2020neurips-improved/)

BibTeX

@inproceedings{harvey2020neurips-improved,
  title     = {{Improved Algorithms for Online Submodular Maximization via First-Order Regret Bounds}},
  author    = {Harvey, Nicholas and Liaw, Christopher and Soma, Tasuku},
  booktitle = {Neural Information Processing Systems},
  year      = {2020},
  url       = {https://mlanthology.org/neurips/2020/harvey2020neurips-improved/}
}