AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity

Abstract

We present an improved method for symbolic regression that seeks to fit data to formulas that are Pareto-optimal, in the sense of having the best accuracy for a given complexity. It improves on the previous state-of-the-art by typically being orders of magnitude more robust toward noise and bad data, and also by discovering many formulas that stumped previous methods. We develop a method for discovering generalized symmetries (arbitrary modularity in the computational graph of a formula) from gradient properties of a neural network fit. We use normalizing flows to generalize our symbolic regression method to probability distributions from which we only have samples, and employ statistical hypothesis testing to accelerate robust brute-force search.

Cite

Text

Udrescu et al. "AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity." Neural Information Processing Systems, 2020.

Markdown

[Udrescu et al. "AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity." Neural Information Processing Systems, 2020.](https://mlanthology.org/neurips/2020/udrescu2020neurips-ai/)

BibTeX

@inproceedings{udrescu2020neurips-ai,
  title     = {{AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity}},
  author    = {Udrescu, Silviu-Marian and Tan, Andrew and Feng, Jiahai and Neto, Orisvaldo and Wu, Tailin and Tegmark, Max},
  booktitle = {Neural Information Processing Systems},
  year      = {2020},
  url       = {https://mlanthology.org/neurips/2020/udrescu2020neurips-ai/}
}