One Loss for All: Deep Hashing with a Single Cosine Similarity Based Learning Objective
Abstract
A deep hashing model typically has two main learning objectives: to make the learned binary hash codes discriminative and to minimize a quantization error. With further constraints such as bit balance and code orthogonality, it is not uncommon for existing models to employ a large number (>4) of losses. This leads to difficulties in model training and subsequently impedes their effectiveness. In this work, we propose a novel deep hashing model with only $\textit{a single learning objective}$. Specifically, we show that maximizing the cosine similarity between the continuous codes and their corresponding $\textit{binary orthogonal codes}$ can ensure both hash code discriminativeness and quantization error minimization. Further, with this learning objective, code balancing can be achieved by simply using a Batch Normalization (BN) layer and multi-label classification is also straightforward with label smoothing. The result is a one-loss deep hashing model that removes all the hassles of tuning the weights of various losses. Importantly, extensive experiments show that our model is highly effective, outperforming the state-of-the-art multi-loss hashing models on three large-scale instance retrieval benchmarks, often by significant margins.
Cite
Text
Hoe et al. "One Loss for All: Deep Hashing with a Single Cosine Similarity Based Learning Objective." Neural Information Processing Systems, 2021.Markdown
[Hoe et al. "One Loss for All: Deep Hashing with a Single Cosine Similarity Based Learning Objective." Neural Information Processing Systems, 2021.](https://mlanthology.org/neurips/2021/hoe2021neurips-one/)BibTeX
@inproceedings{hoe2021neurips-one,
title = {{One Loss for All: Deep Hashing with a Single Cosine Similarity Based Learning Objective}},
author = {Hoe, Jiun Tian and Ng, Kam Woh and Zhang, Tianyu and Chan, Chee Seng and Song, Yi-Zhe and Xiang, Tao},
booktitle = {Neural Information Processing Systems},
year = {2021},
url = {https://mlanthology.org/neurips/2021/hoe2021neurips-one/}
}