Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization

Abstract

We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. We establish a lower bound of $\Omega\left(\sqrt{\kappa}\epsilon^{-2}\right)$ for deterministic oracles, where $\epsilon$ defines the level of approximate stationarity and $\kappa$ is the condition number. Our lower bound matches the best existing upper bound in the $\epsilon$ and $\kappa$ dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of $\Omega\left(\sqrt{\kappa}\epsilon^{-2} + \kappa^{1/3}\epsilon^{-4}\right)$. It suggests that there is a gap between the best existing upper bound $\mathcal{O}(\kappa^3 \epsilon^{-4})$ and our lower bound in the condition number dependence.

Cite

Text

Li et al. "Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization." Neural Information Processing Systems, 2021.

Markdown

[Li et al. "Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization." Neural Information Processing Systems, 2021.](https://mlanthology.org/neurips/2021/li2021neurips-complexity/)

BibTeX

@inproceedings{li2021neurips-complexity,
  title     = {{Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization}},
  author    = {Li, Haochuan and Tian, Yi and Zhang, Jingzhao and Jadbabaie, Ali},
  booktitle = {Neural Information Processing Systems},
  year      = {2021},
  url       = {https://mlanthology.org/neurips/2021/li2021neurips-complexity/}
}