Test-Time Personalization with a Transformer for Human Pose Estimation
Abstract
We propose to personalize a 2D human pose estimator given a set of test images of a person without using any manual annotations. While there is a significant advancement in human pose estimation, it is still very challenging for a model to generalize to different unknown environments and unseen persons. Instead of using a fixed model for every test case, we adapt our pose estimator during test time to exploit person-specific information. We first train our model on diverse data with both a supervised and a self-supervised pose estimation objectives jointly. We use a Transformer model to build a transformation between the self-supervised keypoints and the supervised keypoints. During test time, we personalize and adapt our model by fine-tuning with the self-supervised objective. The pose is then improved by transforming the updated self-supervised keypoints. We experiment with multiple datasets and show significant improvements on pose estimations with our self-supervised personalization. Project page with code is available at https://liyz15.github.io/TTP/.
Cite
Text
Li et al. "Test-Time Personalization with a Transformer for Human Pose Estimation." Neural Information Processing Systems, 2021.Markdown
[Li et al. "Test-Time Personalization with a Transformer for Human Pose Estimation." Neural Information Processing Systems, 2021.](https://mlanthology.org/neurips/2021/li2021neurips-testtime/)BibTeX
@inproceedings{li2021neurips-testtime,
title = {{Test-Time Personalization with a Transformer for Human Pose Estimation}},
author = {Li, Yizhuo and Hao, Miao and Di, Zonglin and Gundavarapu, Nitesh Bharadwaj and Wang, Xiaolong},
booktitle = {Neural Information Processing Systems},
year = {2021},
url = {https://mlanthology.org/neurips/2021/li2021neurips-testtime/}
}