Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

Abstract

Normalizing flows are generative models that provide tractable density estimation via an invertible transformation from a simple base distribution to a complex target distribution. However, this technique cannot directly model data supported on an unknown low-dimensional manifold, a common occurrence in real-world domains such as image data. Recent attempts to remedy this limitation have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation. We recover this benefit with Conformal Embedding Flows, a framework for designing flows that learn manifolds with tractable densities. We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data. To this end, we present a series of conformal building blocks and apply them in experiments with synthetic and real-world data to demonstrate that flows can model manifold-supported distributions without sacrificing tractable likelihoods.

Cite

Text

Ross and Cresswell. "Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows." Neural Information Processing Systems, 2021.

Markdown

[Ross and Cresswell. "Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows." Neural Information Processing Systems, 2021.](https://mlanthology.org/neurips/2021/ross2021neurips-tractable/)

BibTeX

@inproceedings{ross2021neurips-tractable,
  title     = {{Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows}},
  author    = {Ross, Brendan and Cresswell, Jesse},
  booktitle = {Neural Information Processing Systems},
  year      = {2021},
  url       = {https://mlanthology.org/neurips/2021/ross2021neurips-tractable/}
}