Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote
Abstract
We present a new second-order oracle bound for the expected risk of a weighted majority vote. The bound is based on a novel parametric form of the Chebyshev-Cantelli inequality (a.k.a. one-sided Chebyshev’s), which is amenable to efficient minimization. The new form resolves the optimization challenge faced by prior oracle bounds based on the Chebyshev-Cantelli inequality, the C-bounds [Germain et al., 2015], and, at the same time, it improves on the oracle bound based on second order Markov’s inequality introduced by Masegosa et al. [2020]. We also derive a new concentration of measure inequality, which we name PAC-Bayes-Bennett, since it combines PAC-Bayesian bounding with Bennett’s inequality. We use it for empirical estimation of the oracle bound. The PAC-Bayes-Bennett inequality improves on the PAC-Bayes-Bernstein inequality of Seldin et al. [2012]. We provide an empirical evaluation demonstrating that the new bounds can improve on the work of Masegosa et al. [2020]. Both the parametric form of the Chebyshev-Cantelli inequality and the PAC-Bayes-Bennett inequality may be of independent interest for the study of concentration of measure in other domains.
Cite
Text
Wu et al. "Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote." Neural Information Processing Systems, 2021.Markdown
[Wu et al. "Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote." Neural Information Processing Systems, 2021.](https://mlanthology.org/neurips/2021/wu2021neurips-chebyshevcantelli/)BibTeX
@inproceedings{wu2021neurips-chebyshevcantelli,
title = {{Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote}},
author = {Wu, Yi-Shan and Masegosa, Andres and Lorenzen, Stephan and Igel, Christian and Seldin, Yevgeny},
booktitle = {Neural Information Processing Systems},
year = {2021},
url = {https://mlanthology.org/neurips/2021/wu2021neurips-chebyshevcantelli/}
}