AutoST: Towards the Universal Modeling of Spatio-Temporal Sequences

Abstract

The analysis of spatio-temporal sequences plays an important role in many real-world applications, demanding a high model capacity to capture the interdependence among spatial and temporal dimensions. Previous studies provided separated network design in three categories: spatial first, temporal first, and spatio-temporal synchronous. However, the manually-designed heterogeneous models can hardly meet the spatio-temporal dependency capturing priority for various tasks. To address this, we proposed a universal modeling framework with three distinctive characteristics: (i) Attention-based network backbone, including S2T Layer (spatial first), T2S Layer (temporal first), and STS Layer (spatio-temporal synchronous). (ii) The universal modeling framework, named UniST, with a unified architecture that enables flexible modeling priorities with the proposed three different modules. (iii) An automatic search strategy, named AutoST, automatically searches the optimal spatio-temporal modeling priority by network architecture search. Extensive experiments on five real-world datasets demonstrate that UniST with any single type of our three proposed modules can achieve state-of-the-art performance. Furthermore, AutoST can achieve overwhelming performance with UniST.

Cite

Text

Li et al. "AutoST: Towards the Universal Modeling of Spatio-Temporal Sequences." Neural Information Processing Systems, 2022.

Markdown

[Li et al. "AutoST: Towards the Universal Modeling of Spatio-Temporal Sequences." Neural Information Processing Systems, 2022.](https://mlanthology.org/neurips/2022/li2022neurips-autost/)

BibTeX

@inproceedings{li2022neurips-autost,
  title     = {{AutoST: Towards the Universal Modeling of Spatio-Temporal Sequences}},
  author    = {Li, Jianxin and Zhang, Shuai and Xiong, Hui and Zhou, Haoyi},
  booktitle = {Neural Information Processing Systems},
  year      = {2022},
  url       = {https://mlanthology.org/neurips/2022/li2022neurips-autost/}
}