Semi-Supervised Semantic Segmentation with Prototype-Based Consistency Regularization

Abstract

Semi-supervised semantic segmentation requires the model to effectively propagate the label information from limited annotated images to unlabeled ones. A challenge for such a per-pixel prediction task is the large intra-class variation, i.e., regions belonging to the same class may exhibit a very different appearance even in the same picture. This diversity will make the label propagation hard from pixels to pixels. To address this problem, we propose a novel approach to regularize the distribution of within-class features to ease label propagation difficulty. Specifically, our approach encourages the consistency between the prediction from a linear predictor and the output from a prototype-based predictor, which implicitly encourages features from the same pseudo-class to be close to at least one within-class prototype while staying far from the other between-class prototypes. By further incorporating CutMix operations and a carefully-designed prototype maintenance strategy, we create a semi-supervised semantic segmentation algorithm that demonstrates superior performance over the state-of-the-art methods from extensive experimental evaluation on both Pascal VOC and Cityscapes benchmarks.

Cite

Text

Xu et al. "Semi-Supervised Semantic Segmentation with Prototype-Based Consistency Regularization." Neural Information Processing Systems, 2022.

Markdown

[Xu et al. "Semi-Supervised Semantic Segmentation with Prototype-Based Consistency Regularization." Neural Information Processing Systems, 2022.](https://mlanthology.org/neurips/2022/xu2022neurips-semisupervised/)

BibTeX

@inproceedings{xu2022neurips-semisupervised,
  title     = {{Semi-Supervised Semantic Segmentation with Prototype-Based Consistency Regularization}},
  author    = {Xu, Haiming and Liu, Lingqiao and Bian, Qiuchen and Yang, Zhen},
  booktitle = {Neural Information Processing Systems},
  year      = {2022},
  url       = {https://mlanthology.org/neurips/2022/xu2022neurips-semisupervised/}
}