SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation

Abstract

Unsupervised semantic segmentation is a challenging task that segments images into semantic groups without manual annotation. Prior works have primarily focused on leveraging prior knowledge of semantic consistency or priori concepts from self-supervised learning methods, which often overlook the coherence property of image segments. In this paper, we demonstrate that the smoothness prior, asserting that close features in a metric space share the same semantics, can significantly simplify segmentation by casting unsupervised semantic segmentation as an energy minimization problem. Under this paradigm, we propose a novel approach called SmooSeg that harnesses self-supervised learning methods to model the closeness relationships among observations as smoothness signals. To effectively discover coherent semantic segments, we introduce a novel smoothness loss that promotes piecewise smoothness within segments while preserving discontinuities across different segments. Additionally, to further enhance segmentation quality, we design an asymmetric teacher-student style predictor that generates smoothly updated pseudo labels, facilitating an optimal fit between observations and labeling outputs. Thanks to the rich supervision cues of the smoothness prior, our SmooSeg significantly outperforms STEGO in terms of pixel accuracy on three datasets: COCOStuff (+14.9\%), Cityscapes (+13.0\%), and Potsdam-3 (+5.7\%).

Cite

Text

Lan et al. "SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation." Neural Information Processing Systems, 2023.

Markdown

[Lan et al. "SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation." Neural Information Processing Systems, 2023.](https://mlanthology.org/neurips/2023/lan2023neurips-smooseg/)

BibTeX

@inproceedings{lan2023neurips-smooseg,
  title     = {{SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation}},
  author    = {Lan, Mengcheng and Wang, Xinjiang and Ke, Yiping and Xu, Jiaxing and Feng, Litong and Zhang, Wayne},
  booktitle = {Neural Information Processing Systems},
  year      = {2023},
  url       = {https://mlanthology.org/neurips/2023/lan2023neurips-smooseg/}
}