Variational Monte Carlo on a Budget — Fine-Tuning Pre-Trained Neural Wavefunctions

Abstract

Obtaining accurate solutions to the Schrödinger equation is the key challenge in computational quantum chemistry. Deep-learning-based Variational Monte Carlo (DL-VMC) has recently outperformed conventional approaches in terms of accuracy, but only at large computational cost.Whereas in many domains models are trained once and subsequently applied for inference, accurate DL-VMC so far requires a full optimization for every new problem instance, consuming thousands of GPUhs even for small molecules.We instead propose a DL-VMC model which has been pre-trained using self-supervised wavefunction optimization on a large and chemically diverse set of molecules. Applying this model to new molecules without any optimization, yields wavefunctions and absolute energies that outperform established methods such as CCSD(T)-2Z.To obtain accurate relative energies, only few fine-tuning steps of this base model are required.We accomplish this with a fully end-to-end machine-learned model, consisting of an improved geometry embedding architecture and an existing SE(3)-equivariant model to represent molecular orbitals. Combining this architecture with continuous sampling of geometries, we improve zero-shot accuracy by two orders of magnitude compared to the state of the art.We extensively evaluate the accuracy, scalability and limitations of our base model on a wide variety of test systems.

Cite

Text

Scherbela et al. "Variational Monte Carlo on a Budget — Fine-Tuning Pre-Trained Neural Wavefunctions." Neural Information Processing Systems, 2023.

Markdown

[Scherbela et al. "Variational Monte Carlo on a Budget — Fine-Tuning Pre-Trained Neural Wavefunctions." Neural Information Processing Systems, 2023.](https://mlanthology.org/neurips/2023/scherbela2023neurips-variational/)

BibTeX

@inproceedings{scherbela2023neurips-variational,
  title     = {{Variational Monte Carlo on a Budget — Fine-Tuning Pre-Trained Neural Wavefunctions}},
  author    = {Scherbela, Michael and Gerard, Leon and Grohs, Philipp},
  booktitle = {Neural Information Processing Systems},
  year      = {2023},
  url       = {https://mlanthology.org/neurips/2023/scherbela2023neurips-variational/}
}