A High-Resolution Dataset for Instance Detection with Multi-View Object Capture

Abstract

Instance detection (InsDet) is a long-lasting problem in robotics and computer vision, aiming to detect object instances (predefined by some visual examples) in a cluttered scene. Despite its practical significance, its advancement is overshadowed by Object Detection, which aims to detect objects belonging to some predefined classes. One major reason is that current InsDet datasets are too small in scale by today's standards. For example, the popular InsDet dataset GMU (published in 2016) has only 23 instances, far less than COCO (80 classes), a well-known object detection dataset published in 2014. We are motivated to introduce a new InsDet dataset and protocol. First, we define a realistic setup for InsDet: training data consists of multi-view instance captures, along with diverse scene images allowing synthesizing training images by pasting instance images on them with free box annotations. Second, we release a real-world database, which contains multi-view capture of 100 object instances, and high-resolution (6k$\times$8k) testing images. Third, we extensively study baseline methods for InsDet on our dataset, analyze their performance and suggest future work. Somewhat surprisingly, using the off-the-shelf class-agnostic segmentation model (Segment Anything Model, SAM) and the self-supervised feature representation DINOv2 performs the best, achieving $>$10 AP better than end-to-end trained InsDet models that repurpose object detectors (e.g., FasterRCNN and RetinaNet).

Cite

Text

Shen et al. "A High-Resolution Dataset for Instance Detection with Multi-View Object Capture." Neural Information Processing Systems, 2023.

Markdown

[Shen et al. "A High-Resolution Dataset for Instance Detection with Multi-View Object Capture." Neural Information Processing Systems, 2023.](https://mlanthology.org/neurips/2023/shen2023neurips-highresolution/)

BibTeX

@inproceedings{shen2023neurips-highresolution,
  title     = {{A High-Resolution Dataset for Instance Detection with Multi-View Object Capture}},
  author    = {Shen, Qianqian and Zhao, Yunhan and Kwon, Nahyun and Kim, Jeeeun and Li, Yanan and Kong, Shu},
  booktitle = {Neural Information Processing Systems},
  year      = {2023},
  url       = {https://mlanthology.org/neurips/2023/shen2023neurips-highresolution/}
}