Cluster-Wise Graph Transformer with Dual-Granularity Kernelized Attention
Abstract
In the realm of graph learning, there is a category of methods that conceptualize graphs as hierarchical structures, utilizing node clustering to capture broader structural information. While generally effective, these methods often rely on a fixed graph coarsening routine, leading to overly homogeneous cluster representations and loss of node-level information. In this paper, we envision the graph as a network of interconnected node sets without compressing each cluster into a single embedding. To enable effective information transfer among these node sets, we propose the Node-to-Cluster Attention (N2C-Attn) mechanism. N2C-Attn incorporates techniques from Multiple Kernel Learning into the kernelized attention framework, effectively capturing information at both node and cluster levels. We then devise an efficient form for N2C-Attn using the cluster-wise message-passing framework, achieving linear time complexity. We further analyze how N2C-Attn combines bi-level feature maps of queries and keys, demonstrating its capability to merge dual-granularity information. The resulting architecture, Cluster-wise Graph Transformer (Cluster-GT), which uses node clusters as tokens and employs our proposed N2C-Attn module, shows superior performance on various graph-level tasks. Code is available at https://github.com/LUMIA-Group/Cluster-wise-Graph-Transformer.
Cite
Text
Huang et al. "Cluster-Wise Graph Transformer with Dual-Granularity Kernelized Attention." Neural Information Processing Systems, 2024. doi:10.52202/079017-1052Markdown
[Huang et al. "Cluster-Wise Graph Transformer with Dual-Granularity Kernelized Attention." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/huang2024neurips-clusterwise/) doi:10.52202/079017-1052BibTeX
@inproceedings{huang2024neurips-clusterwise,
title = {{Cluster-Wise Graph Transformer with Dual-Granularity Kernelized Attention}},
author = {Huang, Siyuan and Song, Yunchong and Zhou, Jiayue and Lin, Zhouhan},
booktitle = {Neural Information Processing Systems},
year = {2024},
doi = {10.52202/079017-1052},
url = {https://mlanthology.org/neurips/2024/huang2024neurips-clusterwise/}
}