RAGraph: A General Retrieval-Augmented Graph Learning Framework
Abstract
Graph Neural Networks (GNNs) have become essential in interpreting relational data across various domains, yet, they often struggle to generalize to unseen graph data that differs markedly from training instances. In this paper, we introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph), which brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios. On the top of our framework is a toy graph vector library that we established, which captures key attributes, such as features and task-specific label information. During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks, integrating the retrieved data to enrich the learning context via the message-passing prompting mechanism. Our extensive experimental evaluations demonstrate that RAGraph significantly outperforms state-of-the-art graph learning methods in multiple tasks such as node classification, link prediction, and graph classification across both dynamic and static datasets. Furthermore, extensive testing confirms that RAGraph consistently maintains high performance without the need for task-specific fine-tuning, highlighting its adaptability, robustness, and broad applicability.
Cite
Text
Jiang et al. "RAGraph: A General Retrieval-Augmented Graph Learning Framework." Neural Information Processing Systems, 2024. doi:10.52202/079017-0943Markdown
[Jiang et al. "RAGraph: A General Retrieval-Augmented Graph Learning Framework." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/jiang2024neurips-ragraph/) doi:10.52202/079017-0943BibTeX
@inproceedings{jiang2024neurips-ragraph,
title = {{RAGraph: A General Retrieval-Augmented Graph Learning Framework}},
author = {Jiang, Xinke and Qiu, Rihong and Xu, Yongxin and Zhang, Wentao and Zhu, Yichen and Zhang, Ruizhe and Fang, Yuchen and Chu, Xu and Zhao, Junfeng and Wang, Yasha},
booktitle = {Neural Information Processing Systems},
year = {2024},
doi = {10.52202/079017-0943},
url = {https://mlanthology.org/neurips/2024/jiang2024neurips-ragraph/}
}