Semi-Random Matrix Completion via Flow-Based Adaptive Reweighting
Abstract
We consider the well-studied problem of completing a rank-$r$, $\mu$-incoherent matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ from incomplete observations. We focus on this problem in the semi-random setting where each entry is independently revealed with probability at least $p = \frac{\textup{poly}(r, \mu, \log d)}{d}$. Whereas multiple nearly-linear time algorithms have been established in the more specialized fully-random setting where each entry is revealed with probablity exactly $p$, the only known nearly-linear time algorithm in the semi-random setting is due to [CG18], whose sample complexity has a polynomial dependence on the inverse accuracy and condition number and thus cannot achieve high-accuracy recovery. Our main result is the first high-accuracy nearly-linear time algorithm for solving semi-random matrix completion, and an extension to the noisy observation setting.Our result builds upon the recent short-flat decomposition framework of [KLLST23a, KLLST23b] and leverages fast algorithms for flow problems on graphs to solve adaptive reweighting subproblems efficiently.
Cite
Text
Kelner et al. "Semi-Random Matrix Completion via Flow-Based Adaptive Reweighting." Neural Information Processing Systems, 2024. doi:10.52202/079017-4123Markdown
[Kelner et al. "Semi-Random Matrix Completion via Flow-Based Adaptive Reweighting." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/kelner2024neurips-semirandom/) doi:10.52202/079017-4123BibTeX
@inproceedings{kelner2024neurips-semirandom,
title = {{Semi-Random Matrix Completion via Flow-Based Adaptive Reweighting}},
author = {Kelner, Jonathan A. and Li, Jerry and Liu, Allen and Sidford, Aaron and Tian, Kevin},
booktitle = {Neural Information Processing Systems},
year = {2024},
doi = {10.52202/079017-4123},
url = {https://mlanthology.org/neurips/2024/kelner2024neurips-semirandom/}
}