End-to-End Learnable Clustering for Intent Learning in Recommendation

Abstract

Intent learning, which aims to learn users' intents for user understanding and item recommendation, has become a hot research spot in recent years. However, existing methods suffer from complex and cumbersome alternating optimization, limiting performance and scalability. To this end, we propose a novel intent learning method termed \underline{ELCRec}, by unifying behavior representation learning into an \underline{E}nd-to-end \underline{L}earnable \underline{C}lustering framework, for effective and efficient \underline{Rec}ommendation. Concretely, we encode user behavior sequences and initialize the cluster centers (latent intents) as learnable neurons. Then, we design a novel learnable clustering module to separate different cluster centers, thus decoupling users' complex intents. Meanwhile, it guides the network to learn intents from behaviors by forcing behavior embeddings close to cluster centers. This allows simultaneous optimization of recommendation and clustering via mini-batch data. Moreover, we propose intent-assisted contrastive learning by using cluster centers as self-supervision signals, further enhancing mutual promotion. Both experimental results and theoretical analyses demonstrate the superiority of ELCRec from six perspectives. Compared to the runner-up, ELCRec improves NDCG@5 by 8.9\% and reduces computational costs by 22.5\% on the Beauty dataset. Furthermore, due to the scalability and universal applicability, we deploy this method on the industrial recommendation system with 130 million page views and achieve promising results. The codes are available on GitHub\footnote{https://github.com/yueliu1999/ELCRec}. A collection (papers, codes, datasets) of deep group recommendation/intent learning methods is available on GitHub\footnote{https://github.com/yueliu1999/Awesome-Deep-Group-Recommendation}.

Cite

Text

Liu et al. "End-to-End Learnable Clustering for Intent Learning in Recommendation." Neural Information Processing Systems, 2024. doi:10.52202/079017-0192

Markdown

[Liu et al. "End-to-End Learnable Clustering for Intent Learning in Recommendation." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/liu2024neurips-endtoend/) doi:10.52202/079017-0192

BibTeX

@inproceedings{liu2024neurips-endtoend,
  title     = {{End-to-End Learnable Clustering for Intent Learning in Recommendation}},
  author    = {Liu, Yue and Zhu, Shihao and Xia, Jun and Ma, Yingwei and Ma, Jian and Liu, Xinwang and Yu, Shengju and Zhang, Kejun and Zhong, Wenliang},
  booktitle = {Neural Information Processing Systems},
  year      = {2024},
  doi       = {10.52202/079017-0192},
  url       = {https://mlanthology.org/neurips/2024/liu2024neurips-endtoend/}
}