NeuRodin: A Two-Stage Framework for High-Fidelity Neural Surface Reconstruction

Abstract

Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction. Although promising, SDF-based methods often fail to capture detailed geometric structures, resulting in visible defects. By comparing SDF-based volume rendering to density-based volume rendering, we identify two main factors within the SDF-based approach that degrade surface quality: SDF-to-density representation and geometric regularization. These factors introduce challenges that hinder the optimization of the SDF field. To address these issues, we introduce NeuRodin, a novel two-stage neural surface reconstruction framework that not only achieves high-fidelity surface reconstruction but also retains the flexible optimization characteristics of density-based methods. NeuRodin incorporates innovative strategies that facilitate transformation of arbitrary topologies and reduce artifacts associated with density bias. Extensive evaluations on the Tanks and Temples and ScanNet++ datasets demonstrate the superiority of NeuRodin, showing strong reconstruction capabilities for both indoor and outdoor environments using solely posed RGB captures. Project website:https://open3dvlab.github.io/NeuRodin/

Cite

Text

Wang et al. "NeuRodin: A Two-Stage Framework for High-Fidelity Neural Surface Reconstruction." Neural Information Processing Systems, 2024. doi:10.52202/079017-3278

Markdown

[Wang et al. "NeuRodin: A Two-Stage Framework for High-Fidelity Neural Surface Reconstruction." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/wang2024neurips-neurodin/) doi:10.52202/079017-3278

BibTeX

@inproceedings{wang2024neurips-neurodin,
  title     = {{NeuRodin: A Two-Stage Framework for High-Fidelity Neural Surface Reconstruction}},
  author    = {Wang, Yifan and Huang, Di and Ye, Weicai and Zhang, Guofeng and Ouyang, Wanli and He, Tong},
  booktitle = {Neural Information Processing Systems},
  year      = {2024},
  doi       = {10.52202/079017-3278},
  url       = {https://mlanthology.org/neurips/2024/wang2024neurips-neurodin/}
}