Guided Trajectory Generation with Diffusion Models for Offline Model-Based Optimization
Abstract
Optimizing complex and high-dimensional black-box functions is ubiquitous in science and engineering fields. Unfortunately, the online evaluation of these functions is restricted due to time and safety constraints in most cases. In offline model-based optimization (MBO), we aim to find a design that maximizes the target function using only a pre-existing offline dataset. While prior methods consider forward or inverse approaches to address the problem, these approaches are limited by conservatism and the difficulty of learning highly multi-modal mappings. Recently, there has been an emerging paradigm of learning to improve solutions with synthetic trajectories constructed from the offline dataset. In this paper, we introduce a novel conditional generative modeling approach to produce trajectories toward high-scoring regions. First, we construct synthetic trajectories toward high-scoring regions using the dataset while injecting locality bias for consistent improvement directions. Then, we train a conditional diffusion model to generate trajectories conditioned on their scores. Lastly, we sample multiple trajectories from the trained model with guidance to explore high-scoring regions beyond the dataset and select high-fidelity designs among generated trajectories with the proxy function. Extensive experiment results demonstrate that our method outperforms competitive baselines on Design-Bench and its practical variants. The code is publicly available in \url{https://github.com/dbsxodud-11/GTG}.
Cite
Text
Yun et al. "Guided Trajectory Generation with Diffusion Models for Offline Model-Based Optimization." Neural Information Processing Systems, 2024. doi:10.52202/079017-2665Markdown
[Yun et al. "Guided Trajectory Generation with Diffusion Models for Offline Model-Based Optimization." Neural Information Processing Systems, 2024.](https://mlanthology.org/neurips/2024/yun2024neurips-guided/) doi:10.52202/079017-2665BibTeX
@inproceedings{yun2024neurips-guided,
title = {{Guided Trajectory Generation with Diffusion Models for Offline Model-Based Optimization}},
author = {Yun, Taeyoung and Yun, Sujin and Lee, Jaewoo and Park, Jinkyoo},
booktitle = {Neural Information Processing Systems},
year = {2024},
doi = {10.52202/079017-2665},
url = {https://mlanthology.org/neurips/2024/yun2024neurips-guided/}
}