Johnson-Lindenstrauss Lemma Beyond Euclidean Geometry
Abstract
The Johnson-Lindenstrauss (JL) lemma is a cornerstone of dimensionality reduction in Euclidean space, but its applicability to non-Euclidean data has remained limited. This paper extends the JL lemma beyond Euclidean geometry to handle general dissimilarity matrices that are prevalent in real-world applications. We present two complementary approaches: First, we show how the JL transform can be applied to vectors in pseudo-Euclidean space with signature $(p,q)$, providing theoretical guarantees that depend on the ratio of the $(p, q)$ norm and Euclidean norm of two vectors, measuring the deviation from Euclidean geometry. Second, we prove that any symmetric hollow dissimilarity matrix can be represented as a matrix of generalized power distances, with an additional parameter representing the uncertainty level within the data. In this representation, applying the JL transform yields multiplicative approximation with a controlled additive error term proportional to the deviation from Euclidean geometry. Our theoretical results provide fine-grained performance analysis based on the degree to which the input data deviates from Euclidean geometry, making practical and meaningful reduction in dimensionality accessible to a wider class of data. We validate our approaches on both synthetic and real-world datasets, demonstrating the effectiveness of extending the JL lemma to non-Euclidean settings.
Cite
Text
Deng et al. "Johnson-Lindenstrauss Lemma Beyond Euclidean Geometry." Advances in Neural Information Processing Systems, 2025.Markdown
[Deng et al. "Johnson-Lindenstrauss Lemma Beyond Euclidean Geometry." Advances in Neural Information Processing Systems, 2025.](https://mlanthology.org/neurips/2025/deng2025neurips-johnsonlindenstrauss/)BibTeX
@inproceedings{deng2025neurips-johnsonlindenstrauss,
title = {{Johnson-Lindenstrauss Lemma Beyond Euclidean Geometry}},
author = {Deng, Chengyuan and Gao, Jie and Lu, Kevin and Luo, Feng and Xin, Cheng},
booktitle = {Advances in Neural Information Processing Systems},
year = {2025},
url = {https://mlanthology.org/neurips/2025/deng2025neurips-johnsonlindenstrauss/}
}