Jury-and-Judge Chain-of-Thought for Uncovering Toxic Data in 3D Visual Grounding
Abstract
3D Visual Grounding (3DVG) faces persistent challenges due to coarse scene-level observations and logically inconsistent annotations, which introduce ambiguities that compromise data quality and hinder effective model supervision. To address these challenges, we introduce Refer-Judge, a novel framework that harnesses the reasoning capabilities of Multimodal Large Language Models (MLLMs) to identify and mitigate toxic data. At the core of Refer-Judge is a Jury-and-Judge Chain-of-Thought paradigm, inspired by the deliberative process of the judicial system. This framework targets the root causes of annotation noise: jurors collaboratively assess 3DVG samples from diverse perspectives, providing structured, multi-faceted evaluations. Judges then consolidate these insights using a Corroborative Refinement strategy, which adaptively reorganizes information to correct ambiguities arising from biased or incomplete observations. Through this two-stage deliberation, Refer-Judge significantly enhances the reliability of data judgments. Extensive experiments demonstrate that our framework not only achieves human-level discrimination at the scene level but also improves the performance of baseline algorithms via data purification. Code is available at https://github.com/Hermione-HKX/Refer_Judge.
Cite
Text
Huang et al. "Jury-and-Judge Chain-of-Thought for Uncovering Toxic Data in 3D Visual Grounding." Advances in Neural Information Processing Systems, 2025.Markdown
[Huang et al. "Jury-and-Judge Chain-of-Thought for Uncovering Toxic Data in 3D Visual Grounding." Advances in Neural Information Processing Systems, 2025.](https://mlanthology.org/neurips/2025/huang2025neurips-juryandjudge/)BibTeX
@inproceedings{huang2025neurips-juryandjudge,
title = {{Jury-and-Judge Chain-of-Thought for Uncovering Toxic Data in 3D Visual Grounding}},
author = {Huang, Kaixiang and Zhang, Qifeng and Wang, Jin and Yang, Jingru and Zhou, Yang and Yu, Huan and Lu, Guodong and He, Shengfeng},
booktitle = {Advances in Neural Information Processing Systems},
year = {2025},
url = {https://mlanthology.org/neurips/2025/huang2025neurips-juryandjudge/}
}