MAEA: Multimodal Attribution for Embodied AI

Abstract

Understanding multimodal perception for embodied AI is an open question because such inputs may contain highly complementary as well as redundant information for the task. A relevant direction for multimodal policies is understanding the global trends of each modality at the fusion layer. To this end, we disentangle the attributions for visual, language, and previous action inputs across different policies trained on the ALFRED dataset. Attribution analysis can be utilized to rank and group the failure scenarios, investigate modeling and dataset biases, and critically analyze multimodal EAI policies for robustness and user trust before deployment. We present MAEA, a framework to compute global attributions per modality of any differentiable policy. In addition, we show how attributions enable lower-level behavior analysis in EAI policies through two example case studies on language and visual attributions.

Cite

Text

Jain et al. "MAEA: Multimodal Attribution for Embodied AI." NeurIPS 2022 Workshops: TEA, 2022.

Markdown

[Jain et al. "MAEA: Multimodal Attribution for Embodied AI." NeurIPS 2022 Workshops: TEA, 2022.](https://mlanthology.org/neuripsw/2022/jain2022neuripsw-maea/)

BibTeX

@inproceedings{jain2022neuripsw-maea,
  title     = {{MAEA: Multimodal Attribution for Embodied AI}},
  author    = {Jain, Vidhi and Yerramilli, Sahiti and Tamarapalli, Jayant Sravan and Bisk, Yonatan},
  booktitle = {NeurIPS 2022 Workshops: TEA},
  year      = {2022},
  url       = {https://mlanthology.org/neuripsw/2022/jain2022neuripsw-maea/}
}