Motley: Benchmarking Heterogeneity and Personalization in Federated Learning
Abstract
Personalized federated learning considers learning models unique to each client in a heterogeneous network. The resulting client-specific models have been purported to improve metrics such as accuracy, fairness, and robustness in federated networks. However, despite a plethora of work in this area, it remains unclear: (1) which personalization techniques are most effective in various settings, and (2) how important personalization truly is for realistic federated applications. To better answer these questions, we propose Motley, a benchmark for personalized federated learning. Motley consists of a suite of cross-device and cross-silo federated datasets from varied problem domains, as well as thorough evaluation metrics for better understanding the possible impacts of personalization. We establish baselines on the benchmark by comparing a number of representative personalized federated learning methods. These initial results highlight strengths and weaknesses of existing approaches, and raise several open questions for the community. Motley aims to provide a reproducible means with which to advance developments in personalized and heterogeneity-aware federated learning, as well as the related areas of transfer learning, meta-learning, and multi-task learning. Code for the benchmark is open-source and available at: https://github.com/google-research/federated/tree/master/personalization_benchmark
Cite
Text
Wu et al. "Motley: Benchmarking Heterogeneity and Personalization in Federated Learning." NeurIPS 2022 Workshops: Federated_Learning, 2022.Markdown
[Wu et al. "Motley: Benchmarking Heterogeneity and Personalization in Federated Learning." NeurIPS 2022 Workshops: Federated_Learning, 2022.](https://mlanthology.org/neuripsw/2022/wu2022neuripsw-motley/)BibTeX
@inproceedings{wu2022neuripsw-motley,
title = {{Motley: Benchmarking Heterogeneity and Personalization in Federated Learning}},
author = {Wu, Shanshan and Li, Tian and Charles, Zachary and Xiao, Yu and Liu, Ken and Xu, Zheng and Smith, Virginia},
booktitle = {NeurIPS 2022 Workshops: Federated_Learning},
year = {2022},
url = {https://mlanthology.org/neuripsw/2022/wu2022neuripsw-motley/}
}