Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-Horizon Decision-Making in Embodied AI

Abstract

We present Mini-BEHAVIOR, a novel benchmark for embodied AI that challenges agents to plan and solve complex activities resembling everyday human household tasks. The Mini-BEHAVIOR environment extends the widely used MiniGrid grid world with new modes of actuation, combining navigation and manipulation actions, multiple objects, states, scenes, and activities defined in first-order logic. Mini-BEHAVIOR implements various household tasks from the original BEHAVIOR benchmark, along with starter code for data collection and reinforcement learning agent training. Together with Mini-BEHAVIOR, we also include a procedural generation mechanism to create countless variations of each task and support the study of plan generalization and open-ended learning. Mini-BEHAVIOR is fast and easy to use and extend, providing the benefits of rapid prototyping while striking a good balance between symbolic-level decision-making and physical realism, complexity, and embodiment constraints found in complex embodied AI benchmarks. Our goal with Mini-BEHAVIOR is to provide the community with a fast, easy-to-use and modify, open-ended benchmark for developing and evaluating decision-making and generalizing planning solutions for embodied AI. Code is available at https://github.com/StanfordVL/mini_behavior.

Cite

Text

Jin et al. "Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-Horizon Decision-Making in Embodied AI." NeurIPS 2023 Workshops: GenPlan, 2023.

Markdown

[Jin et al. "Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-Horizon Decision-Making in Embodied AI." NeurIPS 2023 Workshops: GenPlan, 2023.](https://mlanthology.org/neuripsw/2023/jin2023neuripsw-minibehavior-a/)

BibTeX

@inproceedings{jin2023neuripsw-minibehavior-a,
  title     = {{Mini-BEHAVIOR: A Procedurally Generated Benchmark for Long-Horizon Decision-Making in Embodied AI}},
  author    = {Jin, Emily and Hu, Jiaheng and Huang, Zhuoyi and Zhang, Ruohan and Wu, Jiajun and Fei-Fei, Li and Martín-Martín, Roberto},
  booktitle = {NeurIPS 2023 Workshops: GenPlan},
  year      = {2023},
  url       = {https://mlanthology.org/neuripsw/2023/jin2023neuripsw-minibehavior-a/}
}