Steganography in Large Language Models: Investigating Emergence and Mitigations
Abstract
The rapid proliferation of frontier model agents promises significant societal advances but also raises concerns about systemic risks arising from unsafe interactions. Collusion to the disadvantage of others has been identified as a central form of undesirable agent cooperation. The use of information hiding (steganography) in agent communications could render collusion practically undetectable. This underscores the need for evaluation frameworks to monitor and mitigate steganographic collusion capabilities. We address a crucial gap in the literature by demonstrating, for the first time, that robust steganographic collusion in LLMs can arise indirectly from optimization pressure. To investigate this problem we design two approaches -- a gradient-based reinforcement learning (GBRL) method and an in-context reinforcement learning (ICRL) method -- for reliably eliciting sophisticated LLM-generated linguistic text steganography. Importantly, we find that emergent steganographic collusion can be robust to both passive steganalytic oversight of model outputs and active mitigation through communication paraphrasing. We contribute a novel model evaluation framework and discuss limitations and future work. Our findings imply that effective risk mitigation from steganographic collusion post-deployment requires innovation in passive and active oversight techniques.
Cite
Text
Mathew et al. "Steganography in Large Language Models: Investigating Emergence and Mitigations." NeurIPS 2024 Workshops: Red_Teaming_GenAI, 2024.Markdown
[Mathew et al. "Steganography in Large Language Models: Investigating Emergence and Mitigations." NeurIPS 2024 Workshops: Red_Teaming_GenAI, 2024.](https://mlanthology.org/neuripsw/2024/mathew2024neuripsw-steganography/)BibTeX
@inproceedings{mathew2024neuripsw-steganography,
title = {{Steganography in Large Language Models: Investigating Emergence and Mitigations}},
author = {Mathew, Yohan and McCarthy, Robert and Matthews, Ollie and Velja, Joan and Schoots, Nandi and Cope, Dylan},
booktitle = {NeurIPS 2024 Workshops: Red_Teaming_GenAI},
year = {2024},
url = {https://mlanthology.org/neuripsw/2024/mathew2024neuripsw-steganography/}
}