Finding Minimal Separators in LWF Chain Graphs

Abstract

We address the problem of finding a minimal separator in a LWF chain graph, namely, finding a set $Z$ of nodes that separates a given non-adjacent pair of nodes such that no proper subset of $Z$ separates that pair. We analyze several versions of this problem and offer polynomial time algorithms for each. These include finding a minimal separator from a restricted set of nodes, finding a minimal separator for two given disjoint sets, and testing whether a given separator is minimal.

Cite

Text

Javidian and Valtorta. "Finding Minimal Separators in LWF Chain Graphs." Proceedings of the Ninth International Conference on Probabilistic Graphical Models, 2018.

Markdown

[Javidian and Valtorta. "Finding Minimal Separators in LWF Chain Graphs." Proceedings of the Ninth International Conference on Probabilistic Graphical Models, 2018.](https://mlanthology.org/pgm/2018/javidian2018pgm-finding/)

BibTeX

@inproceedings{javidian2018pgm-finding,
  title     = {{Finding Minimal Separators in LWF Chain Graphs}},
  author    = {Javidian, Mohammad Ali and Valtorta, Marco},
  booktitle = {Proceedings of the Ninth International Conference on Probabilistic Graphical Models},
  year      = {2018},
  pages     = {193-200},
  volume    = {72},
  url       = {https://mlanthology.org/pgm/2018/javidian2018pgm-finding/}
}