Sum-Product-Transform Networks: Exploiting Symmetries Using Invertible Transformations

Abstract

In this work, we propose Sum-Product-Transform Networks (SPTN), an extension of sum-product networks that uses invertible transformations as additional internal nodes. The type and placement of transformations determine properties of the resulting SPTN with many interesting special cases. Importantly, SPTN with Gaussian leaves and affine transformations pose the same inference task tractable that can be computed efficiently in SPNs. We propose to store and optimize affine transformations in their SVD decompositions using an efficient parametrization of unitary matrices by a set of Givens rotations. Last but not least, we demonstrate that G-SPTNs pushes the state-of-the-art on the density estimation task on used datasets.

Cite

Text

Pevný et al. "Sum-Product-Transform Networks: Exploiting Symmetries Using Invertible Transformations." Proceedings of pgm 2020, 2020.

Markdown

[Pevný et al. "Sum-Product-Transform Networks: Exploiting Symmetries Using Invertible Transformations." Proceedings of pgm 2020, 2020.](https://mlanthology.org/pgm/2020/pevny2020pgm-sumproducttransform/)

BibTeX

@inproceedings{pevny2020pgm-sumproducttransform,
  title     = {{Sum-Product-Transform Networks: Exploiting Symmetries Using Invertible Transformations}},
  author    = {Pevný, Tomáš and Smídl, Václav and Trapp, Martin and Poláček, Ondřej and Oberhuber, Tomáš},
  booktitle = {Proceedings of pgm 2020},
  year      = {2020},
  pages     = {341-352},
  volume    = {138},
  url       = {https://mlanthology.org/pgm/2020/pevny2020pgm-sumproducttransform/}
}