Supervised Knowledge May Hurt Novel Class Discovery Performance
Abstract
Novel class discovery (NCD) aims to infer novel categories in an unlabeled dataset by leveraging prior knowledge of a labeled set comprising disjoint but related classes. Given that most existing literature focuses primarily on utilizing supervised knowledge from a labeled set at the methodology level, this paper considers the question: Is supervised knowledge always helpful at different levels of semantic relevance? To proceed, we first establish a novel metric, so-called transfer leakage, to measure the semantic similarity between labeled/unlabeled datasets. To show the validity of the proposed metric, we build up a large-scale benchmark with various degrees of semantic similarities between labeled/unlabeled datasets on ImageNet by leveraging its hierarachical class structure. The results based on the proposed benchmark show that the proposed transfer leakage is in line with the hierarachical class structure; and that NCD performance is consistent with the semantic similarities (measured by the proposed metric). Next, by using the proposed transfer leakage, we conduct various empirical experiments with different levels of semantic similarity, yielding that supervised knowledge may hurt NCD performance. Specifically, using supervised information from a low-similarity labeled set may lead to a suboptimal result as compared to using pure self-supervised knowledge. These results reveal the inadequacy of the existing NCD literature which usually assumes that supervised knowledge is beneficial. Finally, we develop a pseudo-version of the transfer leakage as a practical reference to decide if supervised knowledge should be used in NCD. Its effectiveness is supported by our empirical studies, which show that the pseudo transfer leakage (with or without supervised knowledge) is consistent with the corresponding accuracy based on various datasets.
Cite
Text
Li et al. "Supervised Knowledge May Hurt Novel Class Discovery Performance." Transactions on Machine Learning Research, 2023.Markdown
[Li et al. "Supervised Knowledge May Hurt Novel Class Discovery Performance." Transactions on Machine Learning Research, 2023.](https://mlanthology.org/tmlr/2023/li2023tmlr-supervised/)BibTeX
@article{li2023tmlr-supervised,
title = {{Supervised Knowledge May Hurt Novel Class Discovery Performance}},
author = {Li, Ziyun and Otholt, Jona and Dai, Ben and Hu, Di and Meinel, Christoph and Yang, Haojin},
journal = {Transactions on Machine Learning Research},
year = {2023},
url = {https://mlanthology.org/tmlr/2023/li2023tmlr-supervised/}
}