Wolf: Dense Video Captioning with a World Summarization Framework
Abstract
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing both image and video models, our framework captures different levels of information and summarizes them efficiently. Our approach can be applied to enhance video understanding, auto-labeling, and captioning. To evaluate caption quality, we introduce CapScore, an LLM-based metric to assess the similarity and quality of generated captions compared to the ground truth captions. We further build four human-annotated datasets in three domains: autonomous driving, general scenes, and robotics, to facilitate comprehensive comparisons. We show that Wolf achieves superior captioning performance compared to state-of-the-art approaches from the research community (VILA1.5, CogAgent) and commercial solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with GPT-4V, Wolf improves CapScore (caption quality) by 55.6% and CapScore (caption similarity) by 77.4% on challenging driving videos. Finally, we establish a benchmark for video captioning and introduce a leaderboard, aiming to accelerate advancements in video understanding, captioning, and data alignment.
Cite
Text
Li et al. "Wolf: Dense Video Captioning with a World Summarization Framework." Transactions on Machine Learning Research, 2025.Markdown
[Li et al. "Wolf: Dense Video Captioning with a World Summarization Framework." Transactions on Machine Learning Research, 2025.](https://mlanthology.org/tmlr/2025/li2025tmlr-wolf/)BibTeX
@article{li2025tmlr-wolf,
title = {{Wolf: Dense Video Captioning with a World Summarization Framework}},
author = {Li, Boyi and Zhu, Ligeng and Tian, Ran and Tan, Shuhan and Chen, Yuxiao and Lu, Yao and Cui, Yin and Veer, Sushant and Ehrlich, Max and Philion, Jonah and Weng, Xinshuo and Xue, Fuzhao and Fan, Linxi and Zhu, Yuke and Kautz, Jan and Tao, Andrew and Liu, Ming-Yu and Fidler, Sanja and Ivanovic, Boris and Darrell, Trevor and Malik, Jitendra and Han, Song and Pavone, Marco},
journal = {Transactions on Machine Learning Research},
year = {2025},
url = {https://mlanthology.org/tmlr/2025/li2025tmlr-wolf/}
}