Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey

Abstract

Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of these fields in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. Then, we highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection and related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude with open challenges and future directions. The resource is available at https://github.com/AtsuMiyai/Awesome-OOD-VLM.

Cite

Text

Miyai et al. "Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey." Transactions on Machine Learning Research, 2025.

Markdown

[Miyai et al. "Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey." Transactions on Machine Learning Research, 2025.](https://mlanthology.org/tmlr/2025/miyai2025tmlr-generalized/)

BibTeX

@article{miyai2025tmlr-generalized,
  title     = {{Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey}},
  author    = {Miyai, Atsuyuki and Yang, Jingkang and Zhang, Jingyang and Ming, Yifei and Lin, Yueqian and Yu, Qing and Irie, Go and Joty, Shafiq and Li, Yixuan and Li, Hai Helen and Liu, Ziwei and Yamasaki, Toshihiko and Aizawa, Kiyoharu},
  journal   = {Transactions on Machine Learning Research},
  year      = {2025},
  url       = {https://mlanthology.org/tmlr/2025/miyai2025tmlr-generalized/}
}