Counterfactual Learning of Stochastic Policies with Continuous Actions
Abstract
Counterfactual reasoning from logged data has become increasingly important for many applications such as web advertising or healthcare. In this paper, we address the problem of learning stochastic policies with continuous actions from the viewpoint of counterfactual risk minimization (CRM). While the CRM framework is appealing and well studied for discrete actions, the continuous action case raises new challenges about modelization, optimization, and~offline model selection with real data which turns out to be particularly challenging. Our paper contributes to these three aspects of the CRM estimation pipeline. First, we introduce a modelling strategy based on a joint kernel embedding of contexts and actions, which overcomes the shortcomings of previous discretization approaches. Second, we empirically show that the optimization aspect of counterfactual learning is important, and we demonstrate the benefits of proximal point algorithms and smooth estimators. Finally, we propose an evaluation protocol for offline policies in real-world logged systems, which is challenging since policies cannot be replayed on test data, and we release a new large-scale dataset along with multiple synthetic, yet realistic, evaluation setups.
Cite
Text
Zenati et al. "Counterfactual Learning of Stochastic Policies with Continuous Actions." Transactions on Machine Learning Research, 2025.Markdown
[Zenati et al. "Counterfactual Learning of Stochastic Policies with Continuous Actions." Transactions on Machine Learning Research, 2025.](https://mlanthology.org/tmlr/2025/zenati2025tmlr-counterfactual/)BibTeX
@article{zenati2025tmlr-counterfactual,
title = {{Counterfactual Learning of Stochastic Policies with Continuous Actions}},
author = {Zenati, Houssam and Bietti, Alberto and Martin, Matthieu and Diemert, Eustache and Gaillard, Pierre and Mairal, Julien},
journal = {Transactions on Machine Learning Research},
year = {2025},
url = {https://mlanthology.org/tmlr/2025/zenati2025tmlr-counterfactual/}
}