A Generalization of the Noisy-or Model
Abstract
The Noisy-Or model is convenient for describing a class of uncertain relationships in Bayesian networks [Pearl 1988]. Pearl describes the Noisy-Or model for Boolean variables. Here we generalize the model to nary input and output variables and to arbitrary functions other than the Boolean OR function. This generalization is a useful modeling aid for construction of Bayesian networks. We illustrate with some examples including digital circuit diagnosis and network reliability analysis.
Cite
Text
Srinivas. "A Generalization of the Noisy-or Model." Conference on Uncertainty in Artificial Intelligence, 1993. doi:10.1016/B978-1-4832-1451-1.50030-5Markdown
[Srinivas. "A Generalization of the Noisy-or Model." Conference on Uncertainty in Artificial Intelligence, 1993.](https://mlanthology.org/uai/1993/srinivas1993uai-generalization/) doi:10.1016/B978-1-4832-1451-1.50030-5BibTeX
@inproceedings{srinivas1993uai-generalization,
title = {{A Generalization of the Noisy-or Model}},
author = {Srinivas, Sampath},
booktitle = {Conference on Uncertainty in Artificial Intelligence},
year = {1993},
pages = {208-218},
doi = {10.1016/B978-1-4832-1451-1.50030-5},
url = {https://mlanthology.org/uai/1993/srinivas1993uai-generalization/}
}