Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression

Abstract

Deep Gaussian Processes (DGPs) are multi-layer, flexible extensions of Gaussian Processes but their training remains challenging. Most existing methods for inference in DGPs use sparse approximation which require optimization over a large number of inducing inputs and their locations across layers. In this paper, we simplify the training by setting the locations to a fixed subset of data and sampling the inducing inputs from a variational distribution. This reduces the trainable parameters and computation cost without any performance degradation, as demonstrated by our empirical results on regression data sets. Our modifications simplify and stabilize DGP training methods while making them amenable to sampling schemes such as leverage score and determinantal point processes.

Cite

Text

Jain et al. "Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression." Uncertainty in Artificial Intelligence, 2021.

Markdown

[Jain et al. "Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression." Uncertainty in Artificial Intelligence, 2021.](https://mlanthology.org/uai/2021/jain2021uai-subsetofdata/)

BibTeX

@inproceedings{jain2021uai-subsetofdata,
  title     = {{Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression}},
  author    = {Jain, Ayush and Srijith, P. K. and Khan, Mohammad Emtiyaz},
  booktitle = {Uncertainty in Artificial Intelligence},
  year      = {2021},
  pages     = {1362-1370},
  volume    = {161},
  url       = {https://mlanthology.org/uai/2021/jain2021uai-subsetofdata/}
}