Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization
Abstract
Information-based Bayesian optimization (BO) algorithms have achieved state-of-the-art performance in optimizing a black-box objective function. However, they usually require several approximations or simplifying assumptions (without clearly understanding their effects on the BO performance) and/or their generalization to batch BO is computationally unwieldy, especially with an increasing batch size. To alleviate these issues, this paper presents a novel trusted-maximizers entropy search (TES) acquisition function: It measures how much an input query contributes to the information gain on the maximizer over a finite set of trusted maximizers, i.e., inputs optimizing functions that are sampled from the Gaussian process posterior belief of the objective function. Evaluating TES requires either only a stochastic approximation with sampling or a deterministic approximation with expectation propagation, both of which are investigated and empirically evaluated using synthetic benchmark objective functions and real-world optimization problems, e.g., hyperparameter tuning of a convolutional neural network and synthesizing physically realizable faces to fool a black-box face recognition system. Though TES can naturally be generalized to a batch variant with either approximation, the latter is amenable to be scaled to a much larger batch size in our experiments.
Cite
Text
Nguyen et al. "Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization." Uncertainty in Artificial Intelligence, 2021.Markdown
[Nguyen et al. "Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization." Uncertainty in Artificial Intelligence, 2021.](https://mlanthology.org/uai/2021/nguyen2021uai-trustedmaximizers/)BibTeX
@inproceedings{nguyen2021uai-trustedmaximizers,
title = {{Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization}},
author = {Nguyen, Quoc Phong and Wu, Zhaoxuan and Low, Bryan Kian Hsiang and Jaillet, Patrick},
booktitle = {Uncertainty in Artificial Intelligence},
year = {2021},
pages = {1486-1495},
volume = {161},
url = {https://mlanthology.org/uai/2021/nguyen2021uai-trustedmaximizers/}
}