Byzantine-Tolerant Distributed Multiclass Sparse Linear Discriminant Analysis
Abstract
Communication cost and security issues are both important in large-scale distributed machine learning. In this paper, we investigate a multiclass sparse classification problem under two distributed systems. We propose two distributed multiclass sparse discriminant analysis algorithms based on mean-aggregation and median-aggregation under the normal distributed system or Byzantine failure system. Both of them are computation and communication efficient. Several theoretical results, including estimation error bounds, and support recovery, are established. With moderate initial estimators, our iterative estimators achieve a (near-)optimal rate and exact support recovery after a constant number of rounds. Experiments on both synthetic and real datasets are provided to demonstrate the effectiveness of our proposed methods.
Cite
Text
Bao et al. "Byzantine-Tolerant Distributed Multiclass Sparse Linear Discriminant Analysis." Uncertainty in Artificial Intelligence, 2022.Markdown
[Bao et al. "Byzantine-Tolerant Distributed Multiclass Sparse Linear Discriminant Analysis." Uncertainty in Artificial Intelligence, 2022.](https://mlanthology.org/uai/2022/bao2022uai-byzantinetolerant/)BibTeX
@inproceedings{bao2022uai-byzantinetolerant,
title = {{Byzantine-Tolerant Distributed Multiclass Sparse Linear Discriminant Analysis}},
author = {Bao, Yajie and Liu, Weidong and Mao, Xiaojun and Xiong, Weijia},
booktitle = {Uncertainty in Artificial Intelligence},
year = {2022},
pages = {129-138},
volume = {180},
url = {https://mlanthology.org/uai/2022/bao2022uai-byzantinetolerant/}
}