Variational- and Metric-Based Deep Latent Space for Out-of-Distribution Detection

Abstract

One popular deep-learning approach for the task of Out-Of-Distribution (OOD) detection is based on thresholding the values of per-class Gaussian likelihood of deep features. However, two issues arise with that approach: first, the distributions are often far from being Gaussian; second, many OOD data points fall within the effective support of the known classes’ Gaussians. Thus, either way it is hard to find a good threshold. In contrast, our proposed solution for OOD detection is based on a new latent space where: 1) each known class is well captured by a nearly-isotropic Gaussian; 2) those Gaussians are far from each other and from the origin of the space (together, these properties effectively leave the area around the origin free for OOD data). Concretely, given a (possibly-trained) backbone deep net of choice, we use it to train a conditional variational model via a Kullback Leibler loss, a triplet loss, and a new distancing loss that pushes classes away from each other. During inference, the class-dependent log-likelihood values of a deep feature ensemble of the test point are also weighted based on reconstruction errors, improving further the decision rule. Experiments on popular benchmarks show that our method yields state-of-the-art results, a feat achieved despite the fact that, unlike some competitors, we make no use of OOD data for training or hyperparameter tuning. Our code is available at \url{https://github.com/BGU-CS-VIL/vmdls}.

Cite

Text

Dinari and Freifeld. "Variational- and Metric-Based Deep Latent Space for Out-of-Distribution Detection." Uncertainty in Artificial Intelligence, 2022.

Markdown

[Dinari and Freifeld. "Variational- and Metric-Based Deep Latent Space for Out-of-Distribution Detection." Uncertainty in Artificial Intelligence, 2022.](https://mlanthology.org/uai/2022/dinari2022uai-variational/)

BibTeX

@inproceedings{dinari2022uai-variational,
  title     = {{Variational- and Metric-Based Deep Latent Space for Out-of-Distribution Detection}},
  author    = {Dinari, Or and Freifeld, Oren},
  booktitle = {Uncertainty in Artificial Intelligence},
  year      = {2022},
  pages     = {569-578},
  volume    = {180},
  url       = {https://mlanthology.org/uai/2022/dinari2022uai-variational/}
}