Can I Teach a Robot to Replicate a Line Art

Abstract

Line art is arguably one of the fundamental and versatile modes of expression. We propose a pipeline for a robot to look at a grayscale line art and redraw it. The key novel elements of our pipeline are: a) we propose a novel task of mimicking line drawings, b) to solve the pipeline we modify the Quick-draw dataset and obtain supervised training for converting a line drawing into a series of strokes c) we propose a multi-stage segmentation and graph interpretation pipeline for solving the problem. The resultant method has also been deployed on a CNC plotter as well as a robotic arm. We have trained several variations of the proposed methods and evaluate these on a dataset obtained from Quick-draw. Through the best methods we observe an accuracy of around 98% for this task, which is a significant improvement over the baseline architecture we adapted from. This therefore allows for deployment of the method on robots for replicating line art in a reliable manner. We also show that while the rule-based vectorization methods do suffice for simple drawings, it fails for more complicated sketches, unlike our method which generalizes well to more complicated distributions.

Cite

Text

B.V. et al. "Can I Teach a Robot to Replicate a Line Art." Winter Conference on Applications of Computer Vision, 2020.

Markdown

[B.V. et al. "Can I Teach a Robot to Replicate a Line Art." Winter Conference on Applications of Computer Vision, 2020.](https://mlanthology.org/wacv/2020/bv2020wacv-teach/)

BibTeX

@inproceedings{bv2020wacv-teach,
  title     = {{Can I Teach a Robot to Replicate a Line Art}},
  author    = {B.V., Raghav and Kumar, Subham and Namboodiri, Vinay},
  booktitle = {Winter Conference on Applications of Computer Vision},
  year      = {2020},
  url       = {https://mlanthology.org/wacv/2020/bv2020wacv-teach/}
}