Selective Spatio-Temporal Aggregation Based Pose Refinement System: Towards Understanding Human Activities in Real-World Videos

Abstract

Taking advantage of human pose data for understanding human activities has attracted much attention these days. However, state-of-the-art pose estimators struggle in obtaining high-quality 2D or 3D pose data due to occlusion, truncation and low-resolution in real-world un-annotated videos. Hence, in this work, we propose 1) a Selective Spatio-Temporal Aggregation mechanism, named SST-A, that refines and smooths the keypoint locations extracted by multiple expert pose estimators, 2) an effective weakly-supervised self-training framework which leverages the aggregated poses as pseudo ground-truth instead of handcrafted annotations for real-world pose estimation. Extensive experiments are conducted for evaluating not only the upstream pose refinement but also the downstream action recognition performance on four datasets, Toyota Smarthome, NTU-RGB+D, Charades, and Kinetics-50. We demonstrate that the skeleton data refined by our Pose-Refinement system (SSTA-PRS) is effective at boosting various existing action recognition models, which achieves competitive or state-of-the-art performance. Refined pose data is available at: https://github.com/walker-a11y/SSTA-PRS

Cite

Text

Yang et al. "Selective Spatio-Temporal Aggregation Based Pose Refinement System: Towards Understanding Human Activities in Real-World Videos." Winter Conference on Applications of Computer Vision, 2021.

Markdown

[Yang et al. "Selective Spatio-Temporal Aggregation Based Pose Refinement System: Towards Understanding Human Activities in Real-World Videos." Winter Conference on Applications of Computer Vision, 2021.](https://mlanthology.org/wacv/2021/yang2021wacv-selective/)

BibTeX

@inproceedings{yang2021wacv-selective,
  title     = {{Selective Spatio-Temporal Aggregation Based Pose Refinement System: Towards Understanding Human Activities in Real-World Videos}},
  author    = {Yang, Di and Dai, Rui and Wang, Yaohui and Mallick, Rupayan and Minciullo, Luca and Francesca, Gianpiero and Bremond, Francois},
  booktitle = {Winter Conference on Applications of Computer Vision},
  year      = {2021},
  pages     = {2363-2372},
  url       = {https://mlanthology.org/wacv/2021/yang2021wacv-selective/}
}