Meta Approach to Data Augmentation Optimization
Abstract
Data augmentation policies drastically improve the performance of image recognition tasks, especially when the policies are optimized for the target data and tasks. In this paper, we propose to optimize image recognition models and data augmentation policies simultaneously to improve the performance using gradient descent. Unlike prior methods, our approach avoids using proxy tasks or reducing search space, and can directly improve the validation performance. Our method achieves efficient and scalable training by approximating the gradient of policies by implicit gradient with Neumann series approximation. We demonstrate that our approach can improve the performance of various image classification tasks, including fine-grained image recognition, without using dataset-specific hyperparameter tuning.
Cite
Text
Hataya et al. "Meta Approach to Data Augmentation Optimization." Winter Conference on Applications of Computer Vision, 2022.Markdown
[Hataya et al. "Meta Approach to Data Augmentation Optimization." Winter Conference on Applications of Computer Vision, 2022.](https://mlanthology.org/wacv/2022/hataya2022wacv-meta/)BibTeX
@inproceedings{hataya2022wacv-meta,
title = {{Meta Approach to Data Augmentation Optimization}},
author = {Hataya, Ryuichiro and Zdenek, Jan and Yoshizoe, Kazuki and Nakayama, Hideki},
booktitle = {Winter Conference on Applications of Computer Vision},
year = {2022},
pages = {2574-2583},
url = {https://mlanthology.org/wacv/2022/hataya2022wacv-meta/}
}