Fully Convolutional Cross-Scale-Flows for Image-Based Defect Detection

Abstract

In industrial manufacturing processes, errors frequently occur at unpredictable times and in unknown manifestations. We tackle this problem, known as automatic defect detection, without requiring any image samples of defective parts. Recent works model the distribution of defect-free image data, using either strong statistical priors or overly simplified data representations. In contrast, our approach handles fine-grained representations incorporating the global and local image context while estimating flexibly the density. To this end, we propose a novel fully convolutional cross-scale normalizing flow (CS-Flow) that jointly processes multiple feature maps of different scales. Using normalizing flows to assign meaningful likelihoods to input samples allows for an efficient defect detection on image-level. Moreover, due to the preserved spatial arrangement the latent space of the normalizing flow is interpretable, i. e. it is applicable to localize defective regions in the image. Our work sets a new state-of-the-art in image-level defect detection on the benchmark datasets Magnetic Tile Defects and MVTec AD showing a 100% AUROC on 4 out of 15 classes.

Cite

Text

Rudolph et al. "Fully Convolutional Cross-Scale-Flows for Image-Based Defect Detection." Winter Conference on Applications of Computer Vision, 2022.

Markdown

[Rudolph et al. "Fully Convolutional Cross-Scale-Flows for Image-Based Defect Detection." Winter Conference on Applications of Computer Vision, 2022.](https://mlanthology.org/wacv/2022/rudolph2022wacv-fully/)

BibTeX

@inproceedings{rudolph2022wacv-fully,
  title     = {{Fully Convolutional Cross-Scale-Flows for Image-Based Defect Detection}},
  author    = {Rudolph, Marco and Wehrbein, Tom and Rosenhahn, Bodo and Wandt, Bastian},
  booktitle = {Winter Conference on Applications of Computer Vision},
  year      = {2022},
  pages     = {1088-1097},
  url       = {https://mlanthology.org/wacv/2022/rudolph2022wacv-fully/}
}