ClusterFix: A Cluster-Based Debiasing Approach Without Protected-Group Supervision

Abstract

The failures of Deep Networks can sometimes be ascribed to biases in the data or algorithmic choices. Existing debiasing approaches exploit prior knowledge to avoid unintended solutions; we acknowledge that, in real-world settings, it could be unfeasible to gather enough prior information to characterize the bias, or it could even raise ethical considerations. We hence propose a novel debiasing approach, termed ClusterFix, which does not require any external hint about the nature of biases. Such an approach alters the standard empirical risk minimization and introduces a per-example weight, encoding how critical and far from the majority an example is. Notably, the weights consider how difficult it is for the model to infer the correct pseudo-label, which is obtained in a self-supervised manner by dividing examples into multiple clusters. Extensive experiments show that the misclassification error incurred in identifying the correct cluster allows for identifying examples prone to bias-related issues. As a result, our approach outperforms existing methods on standard benchmarks for bias removal and fairness.

Cite

Text

Capitani et al. "ClusterFix: A Cluster-Based Debiasing Approach Without Protected-Group Supervision." Winter Conference on Applications of Computer Vision, 2024.

Markdown

[Capitani et al. "ClusterFix: A Cluster-Based Debiasing Approach Without Protected-Group Supervision." Winter Conference on Applications of Computer Vision, 2024.](https://mlanthology.org/wacv/2024/capitani2024wacv-clusterfix/)

BibTeX

@inproceedings{capitani2024wacv-clusterfix,
  title     = {{ClusterFix: A Cluster-Based Debiasing Approach Without Protected-Group Supervision}},
  author    = {Capitani, Giacomo and Bolelli, Federico and Porrello, Angelo and Calderara, Simone and Ficarra, Elisa},
  booktitle = {Winter Conference on Applications of Computer Vision},
  year      = {2024},
  pages     = {4870-4879},
  url       = {https://mlanthology.org/wacv/2024/capitani2024wacv-clusterfix/}
}